A CONVENIENT ROUTE FROM 1-ALKENES TO TERMINAL ACETYLENES VIA HYDROALUMINATION REACTIONS

Fumie SATO, Hiroyuki KODAMA, and Masao SATO
Department of Chemical Engineering, Tokyo Institute of Technology,
Meguro, Tokyo 152

Hydroalumination of 1-alkenes with lithium aluminum hydride by catalysis of titanium tetrachloride followed by treatment with bromopropadiene was found to be a convenient route to add the acetylene moiety to the terminal double bond.

Recently it was found that hydroalumination of 1-alkenes with LiAlH $_4$ by catalysis of TiCl $_4$ followed by reaction with 3-halo-1-propene or 3-halo-1-propyne in presence of a catalytic amount of CuCl results in coupling by an $\rm S_N^2$ pathway giving good yields of terminal olefins or terminal allenes, respectively. These results suggested that terminal acetylenes might be obtained by hydro-alumination of 1-alkenes followed by treatment with bromopropadiene readily prepared from commercial 3-bromo-1-propyne.

This procedure, as represented by the specific example shown below, has in fact proved quite satisfactory.

al-H +
$$\frac{\text{TiCl}_4}{}$$
 al (al = 1/4 Al)
$$\frac{\text{CH}_2 = \text{C} = \text{CHBr} / \text{CuCl}}{}$$

After hydroalumination of 2-methyl-1,5-hexadiene (1.84 g, 18.6 mmol) with LiAlH₄ (20 ml of 0.26 molar solution in THF, 5.20 mmol) by catalysis of TiCl₄ (0.05 g, 0.27 mmol), bromopropadiene (2.54 g, 21.4 mmol) and CuCl (0.3 g, 3.0 mmol) were added at 0°C. The reaction mixture was allowed to warm up to room temperature, stirred for 5 hours and then hydrolyzed by dilute hydrochloric acid. GLC analysis indicated the presence of 2-methyl-1-nonen-8-yne, free from 8-methyl-1,2,8-nonatriene, in 54% yield based on olefin.

A summary of the experimental results obtained for the synthesis of various terminal acetylenes is given in Table 1.

The characteristics of the present procedure are summarized as follows.

- (1) As the starting materials are readily available olefins, this procedure is a general method for synthesis of terminal acetylenes.
- (2) The present procedure is an operationally simple one-pot reaction.

(3) Introduction of the acetylene moiety selectively to one of the double bonds of a diolefin is possible.

It has been observed that though the reaction of LiAlR_4 with 3-halo-1-propene uses all of the four alkyl groups of LiAlR_4^2 , only two of the alkyl groups of LiAlR_4 participate in the reaction with 3-halo-1-propyne³. Since, in the reaction under discussion, yields of acetylenes based on olefins were better than 50% in many cases, it is likely that more than two alkyl groups of LiAlR_4 participate in the reaction.

Table 1 Addition of the acetylene moiety to 1-olefins via reaction of the corresponding LiAlR₄ with bromopropadiene in presence of copper(I) chloride

Olefin	Product acetylene ^a	Yield ^b
		%
CH ₂ =CH ₂	CH ₃ CH ₂ CH ₂ C≡CH	43
CH ₃ CH ₂ CH ₂ CH=CH ₂	CH ₂ (CH ₂)4CH ₂ C≒CH	49
CH ₃ CH ₂ CH ₂ CH ₂ CH=CH ₂	CH ₃ (CH ₂) ₅ CH ₂ C≡CH	50
CH3CH=CHCH2CH=CH2	CH ₃ CH=CH(CH ₂) ₃ CH ₂ CECH	52
сн ₂ =с(сн ₃)сн ₂ сн ₂ сн=сн ₂	сн ₂ =с(сн ₃)сн ₂ (сн ₂) ₃ сн ₂ с <u>=</u> сн	55
-CH=CH ₂	-CH ₂ CH ₂ CH ₂ C≡CH	54
CH ₃ CCH ₂ CH ₂ CH=CH ₂ C	сн ₃ ссн ₂ (сн ₂) ₃ сн ₂ с≡сн он	52

^aIdentified by IR, GLC, ¹H NMR and mass spectra. ^bYields determined by GLC analysis and based on olefin. ^c Hydroalumination of 5-hexen-2-one proceeded readily according to the following equation.

This new method could provide a convenient route to many complex acetylene derivatives difficult to prepare by other methods, and a study to find the scope and limitations of these reactions is now under way.

References

- 1) F. Sato, S. Sato and M. Sato, J. Organometal. Chem., <u>131</u>, C26 (1977).
 F. Sato, S. Sato, H. Kodama and M. Sato, J. Organometal. Chem., <u>142</u>, 71 (1977)
- 2) F. Sato, H. Kodama and M. Sato, The 37th Spring Annual Meeting of The Chemical Society of Japan. April, 1978; Abstr. No 2L19.
- 3) F. Sato, K. Oguro and M. Sato, Chem. Lett., in press.
- 4) T.L. Jacobs and W.F. Brill, J. Amer. Chem. Soc., <u>75</u>, 1314 (1953).

(Received May 20, 1978)